
Playing Modified Flappy Bird With Deep Reinforcement Learning

Leo Li*, Zhangnan Jiang*, Zichen Yang*

NYU Tandon School of Engineering

Abstract

GitHub Repository:
https://github.com/SeVEnMY/DeepLearningFinal
In this work, we demonstrate the use of deep reinforcement
learning (DRL) to play a modified version of the popular mo-
bile game Flappy Bird, which included the addition of fire-
balls and the widening of the gap between the pipes. To tackle
this task, we proposed the use of Dueling Deep Q Networks
(DDQN), a variant of the Q-learning algorithm that separates
the value function and the advantage function to improve
learning efficiency. Our testing results showed that as the
number of training iterations increased, the model’s perfor-
mance in terms of the maximum and average scores also im-
proved, and using DDQN led to better performance compared
to using standard Deep Q Networks (DQN). Additionally, us-
ing a pre-trained model as a starting point for training led to
better performance compared to training from scratch. Our re-
sults demonstrate the potential of DRL for playing complex
games and have implications for the broader field of DRL
research, although there are still many challenges and limi-
tations to using DRL for gaming tasks, including the sample
efficiency of DRL algorithms.

Introduction
Flappy Bird is a simple but challenging mobile game that has
gained widespread popularity due to its addictive gameplay
and easy-to-learn controls. In the original version of Flappy
Bird, the player controls a bird that must navigate through a
series of obstacles by tapping the screen to make the bird fly.
The goal is to fly as far as possible without crashing into an
obstacle or falling to the ground.

For the purposes of this study, we have modified the
Flappy Bird game by adding fireballs that generate on a
random y-coordinate and fly from the right to the left in a
straight line (see figure 1). If the bird touches a fireball, it
dies. We have also increased the gap size between the pipes
to allow the AI to navigate the bird around the fireballs.
These modifications are intended to make the game more
difficult for artificial intelligence (AI) algorithms to play.

Playing Flappy Bird is a difficult task for AI algorithms
due to the fast-paced nature of the game and the need for pre-

*These authors contributed equally.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cise control. This has made it an attractive challenge for re-
searchers in the field of deep reinforcement learning (DRL),
which combines the power of deep learning with the princi-
ples of reinforcement learning to allow agents to learn com-
plex tasks by interacting with their environment.

In this paper, we present a new approach for using DRL to
play the modified Flappy Bird game. We propose the use of
Dueling Deep Q Networks (DDQN), a variant of the popular
Q-learning algorithm that uses a neural network to approxi-
mate the optimal action-value function. We demonstrate that
DDQN can learn to play the modified Flappy Bird game at a
high level, outperforming previous approaches on this task.

We will provide a detailed overview of the DDQN algo-
rithm and our implementation in the following sections. We
will also discuss the challenges and limitations of using DRL
to play the modified Flappy Bird game, as well as the impli-
cations of our work for the broader field of DRL.

Literature Survey
Deep Reinforcement Learning Gaming
One of the earliest and most influential applications of DRL
has been in the domain of computer games. Games pro-
vide a rich and challenging environment for DRL algorithms
to learn and adapt, as they often require a combination of
decision-making, problem-solving, and strategic planning
skills.

One of the pioneering works in this area was the paper
“Playing Atari with Deep Reinforcement Learning” (Mnih
et al. 2013), which demonstrated the use of DRL to learn
how to play a variety of Atari 2600 games using raw pixel in-
puts. The authors used a variant of the Q-learning algorithm
called the Deep Q Network (DQN), which used a convo-
lutional neural network (CNN) to approximate the optimal
action-value function. The DQN was able to learn to play
several Atari games at a level comparable to or exceeding
human performance, setting a new benchmark for DRL in
the gaming domain.

Since the publication of this paper, there have been nu-
merous other works on using DRL to play games. These
works have explored a wide range of techniques and algo-
rithms, including policy gradient methods, actor-critic algo-
rithms, and model-based approaches. Some notable exam-
ples include the use of DRL to play the games of Go (Sil-



Figure 1: Modified Flappy Bird Game. There is a fireball
near the bottom of the screen.

ver et al. 2016), Dota 2 (Berner et al. 2019), and complex
MOBA games (Ye et al. 2019).

In addition to these approaches, there have also been
a number of works on using DRL to play simpler, more
arcade-style games such as Flappy Bird (Vu and Tran 2020),
and Snake (Sebastianelli et al. 2021). These games offer a
more focused and constrained learning environment but still
require the agent to learn complex skills and strategies in
order to succeed.

Overall, the use of DRL to play games has provided a
rich and exciting research area that has helped to advance
the state of the art in DRL and AI more broadly. It has also
demonstrated the potential of DRL to solve complex and
challenging tasks in a wide range of domains.

Dueling Deep Q Networks
The Dueling Deep Q Network (DDQN) is a variant of the
popular Q-learning algorithm that was introduced in the pa-
per “Dueling Network Architectures for Deep Reinforce-
ment Learning” (Wang, de Freitas, and Lanctot 2015). It
is designed to improve the stability and efficiency of Q-
learning in deep reinforcement learning (DRL) by decou-
pling the estimation of the value function and the advantage
function.

In traditional Q-learning, the action-value function (Q-
function) is used to estimate the expected future reward for
each action in a given state. The Q-function is typically ap-
proximated using a neural network, which is trained to min-
imize the difference between the predicted Q-values and the

true Q-values through the use of a loss function such as the
mean squared error.

The DDQN algorithm introduces a novel architecture that
separates the estimation of the value function (V) and the
advantage function (A) into two separate streams. The V
stream estimates the value of being in a given state, while
the A stream estimates the relative advantage of each action
in that state. The final Q-values are then computed as the
sum of the V and A streams.

This architecture has been shown to improve the stabil-
ity and convergence of the Q-learning algorithm, as well as
reduce the sensitivity to the choice of the learning rate and
the discount factor. It has also been demonstrated to outper-
form traditional Q-learning on a variety of tasks, including
the Atari 2600 games and the game of Go.

Overall, the DDQN algorithm represents an important
contribution to the field of DRL and has demonstrated its
effectiveness in a wide range of tasks and environments. It
has also inspired a number of follow-up works that have fur-
ther explored and refined the use of dueling architectures in
DRL.

Methodology
Pre-processing
Flappy Bird is an RGB game with multi-dimension game
frames. To reduce the dimension, we perform the pre-
processing procedure to reduce the number of dimensions.
The original game frame input is 288× 512 with 3 channels
R, G and B. We simply convert the image input to grayscale
and rescale it to 84 × 84. Above that, the input is then nor-
malized to [0, 1].

Memory Buffer
When training DQN with continuous game frames, there are
strong correlations between these consecutive inputs. In or-
der to reduce the bond, a memory buffer is used. In each
state memory, we simply store the quadruple (s, a, r, s′) into
a buffer (implemented as a list). The size of the buffer is an-
other hyperparameter to be selected. Most recent states will
be included. The mini-batch used to update weights in DQN
consists of sampled states from the buffer.

Q-Learning
In reinforcement learning problems, we are aiming to make
the best sequence of actions in order to maximize a given
objective. In this Flappy Bird game, we need to figure out
take the action “flap” or not use the learning module. For
all-time game states, we have:

st = xt−n+1,at−n+1,...,xt−1,at−1,xt (1)

where st is the game state at time t, at is the action to take at
time t, and xt is the input, in this question is a game frame
at time t. n is the length of the memory buffer, which is
a hyperparameter to be set. The memory buffer will be in-
troduced in the following section. Q-Learning could give an
estimate of anticipated action at by time step, it is efficient in



this control task. In Q-Learning, we have the Bellman equa-
tion:

Q∗(st, at) = r + γmax
a′

Q(st+1, a
′) (2)

where Q∗(st, at) is the Q-value at current iteration, st and
st+1 are the current and next state, r is the reward value from
the environment. Since there cannot be infinite rewards, we
set a discount for future rewards, and γ is the decay fac-
tor. It is aiming to update and converge to the optimal Q-
value. In order to obtain the ability to generalization to the
unseen data, we are trying to make use of a convolutional
neural network in our approach, which is called a Deep Q
Network(DQN). In each iteration, for the loss calculation
we need to get a target yt, which is called mini-batch in the
training:

yt = r + γmax
a′

Q(s, a′;wt−1) (3)

for a state (s, a, r, s′) defined before. Where wt−1 are pa-
rameters of the DQN at iteration t − 1. a state point is a
data point added to the memory buffer. We need to update
the gradient of the loss function with respect to the weights
using backpropagation.

Loss function
In this problem, the Bellman error is used to calculate the
loss to be backpropagated. The Bellman error is defined as
the mean-squared error between the current estimated Q-
value and the predicted mini-batch(target) yt:

L =
1

2
(yt −Q(s, a;wt))

2 (4)

where yt is the mini batch(target) at time t. Once we got
the MSE loss, we can use Adam(Kingma and Ba 2014) op-
timizer to update the weights of the model. Then backprop-
agate updated weights to the model.

Game Action Reward
In this modified flappy bird game, the score will be added
by one of the birds passing either a pipe or a fireball suc-
cessfully. But for the reward used by the Deep Q-Network,
we need to reward every action the model takes. In the be-
ginning, the reward is initialized as 0.1, after a sequence of
actions, the bird successfully passed a pipe, and the reward
would be added by 0.5. Same for the fireball, if the bird
passed a fireball, the reward would be added by 0.5. Avoid-
ing a fireball and passing a pipe are equally important. If the
bird collided with a pipe or a fireball, the reward would be
set to -1 to punish these actions.

Method Pipeline
As illustrated in Figure2, at first we get game frames and
pre-process them using the methods stated above. The mem-
ory buffer is initialized as an empty list. And we initial-
ize the Deep Q-Network in Table 1 after taking the input
of 84 × 84 × n. In each iteration, we take game frames xt

from the running game and update the state st with xt. The
quadruple (s, a, r, s′) is added to the memory buffer. And
we take the best action by:

at = argmin(Q(st, a)) (5)

Figure 2: The pipeline of our method

In Q-Learning, there will be an exploration-exploitation
problem, to avoid it, we add a random action with proba-
bility ϵ. There is probability ϵ for the model to choose to flap
the bird upwards. Otherwise, it will take the best-estimated
action. The probability ϵ differs from 0.1 to 1 along with the
training progress. Then the loss is calculated and backprop-
agated with the mini-batch. st is updated with at and the
reward r is updated. The game state will be updated at the
end. Inside each iteration, the process is repeated until the
bird collides with a pipe or a fireball.

Conv Name Block type, Count
conv1 [8× 8, 32]
ReLU
conv2 [4× 4, 64]
ReLU
conv3 [3× 3, 64]
ReLU
Fully-connected 512 outputs
Output(Fully-connected) a single output for each action

Table 1: Structure of the Deep Q-Network. There are 3 con-
volution layers and one nonlinear layer after each convolu-
tion. For the output, there is a fully-connected layer to com-
pute one single output for each action

Dueling Deep Q Network
The network structure of the Dueling Deep Q Network used
here can be illustrated in Figure 2. The main idea behind the
Dueling network structure in reinforcement learning is un-
necessary for estimating the value of each action taken by
the model. As in our situation of Flappy Bird, it is some-
times not quite important to know if a flap should be taken
to avoid collision with pipes or fireballs, while in some states
it is critical to take the right flap to keep the bird alive.
This important insight is implemented by using the struc-
ture demonstrated in Figure 2. Instead of directly using a
fully connected layer to transfer the convolution layers, two
fully connected layers are used as the state value function
and state-dependant action advantage function. These two
functions would be combined to calculate a single output



Q function. For an agent behaving based on stochastic pol-
icy π, the values of the state-action pair(s, a) and the state s
could be defined as the following As in (Wang et al., 2015):

Qπ(s, a) = E[Rt|st = s, at = a, π] (6)

V π(s) = Ea π(s)[Q
π(s′, a′)]|s, a, π] (7)

Where s is the image from the game, and a is the action it
takes. The advantage function as equation 7 relates the value
and Q functions:

Aπ(s, a) = Qπ(s, a)− V π(s) (8)

The value function V is used to measure how good the action
is in a certain state, and the Q function is used to measure
what would be the outcome when choosing a certain action
in the state, while the advantage function A is used to get a
relative measure of the importance of each action.
Therefore, using the definition of advantage, we could con-
struct the aggregating module as:

Q(s, a; θ, α, β) = V (s; θ, β) +A(s, a; θ, α) (9)

In order to distinguish two actions obviously, in our im-
plementation, the returned Q value would also abstract the
mean of action score:

x=val+adv-adv.mean(1,keepdim=True)

Figure 3: Dueling Deep Q Network Structure

Results
Training
The number of trainable parameters in DQN is 1,685,154.
The Number of trainable parameters in Dueling DQN is
3,292,131. In our experiments, we tested different models
(DQN and Dueling DQN). Various approaches of reward are
also tested:
a. Reward +0.1 when the bird is initiated and alive, reward
+1.0 when the center of the model passes the top center of
one pipe, and reward -1.0 when the bird crashes with a pipe
or a fireball (game over).
b. Reward +0.1 when the bird is initiated and alive, reward
+0.5 when the center of the model passes the top center of
one pipe, reward +0.5 when the center of the bird totally
passes the x coordinate of one fireball, and reward just once
for each fireball passed, reward -0.1 when the bird crashes
with a pipe or a fireball (game over).
We also conducted experiments over training based on the

pre-trained network. The pre-trained network is a Deep Q-
network trained through playing the original Flappy Bird
game (without fireballs), with the same hyperparameters set.
The pre-trained model continues to be trained through play-
ing the fireball Flappy Game. Intermediate models are also
recorded when the number of iterations reaches 1,000,000.
When the training is in progress, tensorboard is embedded
to monitor the changes in loss, Q-value, and rewards.

Hyperparameter selection
The Hyperparameters we used in all experiments are listed
as follows:
• Image size: 84. The pre-processing we have done trans-

fer the input image to 84*84 size.
• Learning Rate: 1e-6
• Number of Iterations: 2,000,000. Here the number of

iterations also means the number of game frames that
feeds into the model.

• Memory buffer: 48,000. We tuned different memory
buffer sizes to avoid crashing due to running out of mem-
ory.

• Gamma: 0.99. Here gamma is used to model that future
rewards are worth less than immediate rewards.

• Optimizer: Adam.
In this part, we basically keep these hyper-parameters as the
ones we are based on, since the purpose of this project is
to compare if a dueling deep Q network would work better
than the original deep Q network if the pre-trained model
would work better, and the difference between two reward
methods.

Testing results
For testing, we run each trained model 100 times, record all
the scores the certain model gets from 100-time games, and
compare the highest score and the average score in the 100-
time games.

Model Name Max Score Avg Score
Pre-trained DQN, reward b.
fireball, 1,000,000 iters

32 11.42

Pre-trained DQN, reward b.
fireball, 2,000,000 iters

97 21.22

DQN, reward b., 1,000,000 iters 12 3.71
DQN, reward b. 2,000,000 iters 47 8.28

DDQN, reward a.
fireball, 1,000,000 iters

17 5.24

DDQN, reward a.
fireball, 2,000,000 iters

58 14.59

DDQN, reward b.
fireball, 1,000,000 iters

8 3.19

DDQN, reward b.
fireball, 2,000,000 iters

25 7.18

Based on the testing results, we could see that when
the number of iterations goes up, the maximum score and
the average score would be better. Compared with DQN
trained from scratch, DQN trained based on a pre-trained
no-fireball-reward model would have better performance. In



(a) DQN, reward method b.

(b) Pre-trained DQN, reward method b.

(c) DDQN, reward method a.

(d) DDQN, reward method b.

Figure 4: plots of training losses

our opinion, this is because DQN requires a great number of
iterations to improve, if we could train our scratch DQN with
more game frames, the performance would be better. In gen-
eral, we could see that as the number of iterations goes up,
the maximum score and the average score would increase.
Compared with DQN, Dueling DQN works better under the
same condition. Both the maximum score and average score
are higher than DQN when the iteration number is 1,000,000
and 2,000,000. However, compared with the DDQN without
reward on avoiding fireball, the result is not as good as the
one without reward. In our understanding, as we look at the
training loss for the DDQN with reward, the training loss
decrease at first, but it goes up after a certain iteration, the
model is not converging, which may cause the decrease in
performance.

(a) DQN, reward method b.

(b) Pre-trained DQN, reward method b.

(c) DDQN, reward method a.

(d) DDQN, reward method b.

Figure 5: plots of Q-values

Conclusion
In this work, we aimed to demonstrate the use of deep re-
inforcement learning (DRL) to play a modified version of
the popular mobile game Flappy Bird. The modifications to
the game included the addition of fireballs and the widening
of the gap between the pipes, which made the game more
challenging for artificial intelligence algorithms to play.

To tackle this task, we proposed the use of Dueling Deep
Q Networks (DDQN), a variant of the Q-learning algorithm
that separates the value function and the advantage function
to improve learning efficiency. We implemented DDQN us-
ing the PyTorch library and trained the model using a com-
bination of exploration and exploitation to maximize the re-
ward.

Our testing results showed that as the number of training
iterations increased, the model’s performance in terms of the
maximum and average scores also improved. We also found



that using DDQN led to better performance compared to us-
ing standard Deep Q Networks (DQN). Additionally, using a
pre-trained model as a starting point for training led to better
performance compared to training from scratch.

Overall, these results suggest that both the number of
training iterations and the choice of algorithm can have
a significant impact on the model’s performance in play-
ing the modified Flappy Bird game. Further research may
be needed to identify optimal hyperparameter settings and
training strategies for improving the model’s performance.

References
Berner, C.; Brockman, G.; Chan, B.; Cheung, V.; Debiak,
P.; Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.; Hesse,
C.; Józefowicz, R.; Gray, S.; Olsson, C.; Pachocki, J.; Petrov,
M.; de Oliveira Pinto, H. P.; Raiman, J.; Salimans, T.; Schlat-
ter, J.; Schneider, J.; Sidor, S.; Sutskever, I.; Tang, J.; Wolski,
F.; and Zhang, S. 2019. Dota 2 with Large Scale Deep Re-
inforcement Learning. CoRR, abs/1912.06680.
Kingma, D. P.; and Ba, J. 2014. Adam: A Method for
Stochastic Optimization.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. A. 2013.
Playing Atari with Deep Reinforcement Learning. CoRR,
abs/1312.5602.
Sebastianelli, A.; Tipaldi, M.; Ullo, S.; and Glielmo, L.
2021. A Deep Q-Learning based approach applied to the
Snake game.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,
D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587): 484–489.
Vu, T.; and Tran, L. 2020. FlapAI Bird: Training an Agent
to Play Flappy Bird Using Reinforcement Learning Tech-
niques. CoRR, abs/2003.09579.
Wang, Z.; de Freitas, N.; and Lanctot, M. 2015. Dueling
Network Architectures for Deep Reinforcement Learning.
CoRR, abs/1511.06581.
Ye, D.; Liu, Z.; Sun, M.; Shi, B.; Zhao, P.; Wu, H.; Yu, H.;
Yang, S.; Wu, X.; Guo, Q.; Chen, Q.; Yin, Y.; Zhang, H.;
Shi, T.; Wang, L.; Fu, Q.; Yang, W.; and Huang, L. 2019.
Mastering Complex Control in MOBA Games with Deep
Reinforcement Learning. CoRR, abs/1912.09729.


